In vivo cardiovascular pharmacology of 2',3'-cAMP, 2'-AMP, and 3'-AMP in the rat.
نویسندگان
چکیده
UNLABELLED The naturally occurring purine 2',3'-cAMP is metabolized in vitro to 2'-AMP and 3'-AMP, which are subsequently metabolized to adenosine. Whether in vivo 2',3'-cAMP, 2'-AMP, or 3'-AMP are rapidly converted to adenosine and exert rapid effects via adenosine receptors is unknown. To address this question, we compared the cardiovascular and renal effects of 2',3'-cAMP, 2'-AMP, 3'-AMP, 3',5'-cAMP, 5'-AMP, and adenosine in vivo in the rat. Purines were infused intravenously while monitoring mean arterial blood pressure (MABP), heart rate (HR), cardiac output, and renal and mesenteric blood flows. Total peripheral (TPR), renal vascular (RVR), and mesenteric vascular (MVR) resistances were calculated. Urine was collected for determination of urine excretion rate [urine volume (UV)]. When sufficient urine was available, the sodium excretion rate (Na(+)ER) and glomerular filtration rate (GFR) were determined. 2',3'-cAMP, 2'-AMP, and 3'-AMP dose-dependently and profoundly reduced MABP, HR, TPR, and MVR with efficacy and potency similar to adenosine and 5'-AMP. These effects of 2',3'-cAMP, 2'-AMP, and 3'-AMP were attenuated by blockade of adenosine receptors with 1,3-dipropyl-8-(p-sulfophenyl)xanthine. 2',3'-cAMP, 2'-AMP, 3'-AMP, adenosine, and 5'-AMP variably affected RVR, but profoundly (nearly 100%) decreased UV at higher doses. GFR and Na(+)ER could be measured at the lower doses and were suppressed by 2',3'-cAMP, 2'-AMP, and 3'-AMP, but not by adenosine or 5'-AMP. 2',3'-cAMP increased urinary excretion rates of 2'-AMP, 3'-AMP, and adenosine. 3',5'-cAMP exerted no adverse hemodynamic effects yet increased urinary adenosine as efficiently as 2',3'-cAMP. CONCLUSIONS In vivo 2',3'-cAMP is rapidly converted to adenosine. Because both cAMPs increase adenosine in the urinary compartment, these agents may provide unique therapeutic opportunities.
منابع مشابه
Schwann Cells Metabolize Extracellular 2',3'-cAMP to 2'-AMP.
The 3',5'-cAMP-adenosine pathway (3',5'-cAMP→5'-AMP→adenosine) and the 2',3'-cAMP-adenosine pathway (2',3'-cAMP→2'-AMP/3'-AMP→adenosine) are active in the brain. Oligodendrocytes participate in the brain 2',3'-cAMP-adenosine pathway via their robust expression of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase; converts 2',3'-cAMP to 2'-AMP). Because Schwann cells also express CNPase, it i...
متن کاملThe neuroprotective effect of lithium in cannabinoid dependence is mediated through modulation of cyclic AMP, ERK1/2 and GSK-3β phosphorylation in cerebellar granular neurons of rat
Lithium (Li), a glycogen synthase kinase-3β (GSK-3β) inhibitor, has used to attenuate thecannabinoid-induced dependence/withdrawal signs, but molecular mechanisms related to this areunclear. Recent studies indicate the involvement of upstream extracellular signal kinase1/2 (ERK1/2)and downstream GSK-3β pathways in the development of cannabinoid-induced dependence. Thisis mediated through cannab...
متن کاملThe 2',3'-cAMP-adenosine pathway.
Our recent studies employing HPLC-tandem mass spectrometry to analyze venous perfusate from isolated, perfused kidneys demonstrate that intact kidneys produce and release into the extracellular compartment 2',3'-cAMP, a positional isomer of the second messenger 3',5'-cAMP. To our knowledge, this represents the first detection of 2',3'-cAMP in any cell/tissue/organ/organism. Nuclear magnetic res...
متن کاملThe neuroprotective effect of lithium in cannabinoid dependence is mediated through modulation of cyclic AMP, ERK1/2 and GSK-3β phosphorylation in cerebellar granular neurons of rat
Lithium (Li), a glycogen synthase kinase-3β (GSK-3β) inhibitor, has used to attenuate thecannabinoid-induced dependence/withdrawal signs, but molecular mechanisms related to this areunclear. Recent studies indicate the involvement of upstream extracellular signal kinase1/2 (ERK1/2)and downstream GSK-3β pathways in the development of cannabinoid-induced dependence. Thisis mediated through cannab...
متن کامل2',3'-cAMP, 3'-AMP, and 2'-AMP inhibit human aortic and coronary vascular smooth muscle cell proliferation via A2B receptors.
Rat vascular smooth muscle cells (VSMCs) from renal microvessels metabolize 2',3'-cAMP to 2'-AMP and 3'-AMP, and these AMPs are converted to adenosine that inhibits microvascular VSMC proliferation via A(2B) receptors. The goal of this study was to test whether this mechanism also exists in VSMCs from conduit arteries and whether it is similarly expressed in human vs. rat VSMCs. Incubation of r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 346 2 شماره
صفحات -
تاریخ انتشار 2013